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Abstract-Radiative transfer has been considered within a participating plane slab assuming the externally- 
applied radiation to impinge normally on one boundary of the slab while the other boundary is assumed to 
reflect in a diffuse way. The linearly anisotropic and the Rayleigh modes of scattering have been both 
considered. A rigorous solution is developed following a constructive procedure based on projectional 
methods: the resulting computational formulae have been numerically processed to obtain the distribution 

of the physically relevant variables for some significant situations. 

NOMENCLATURE 

a, optical half-thickness; 

c, albedo ; 

L nth exponential integral ; 
1, angular radiation intensity; 
I 
q”2 I,, 

total radiation intensity; 
net radiative flux; 

4+,4-> forward, backward radiative flux. 

Greek symbols 

power entering at T = --a; 
cosine ofthe angle between the direction of 
the radiation intensity and the positive T 

axis ; 
weighted average of the cosine of the 
scattering angle for the linearly aniso- 
tropic scattering case; 
diffuse reflectivity of the boundary T = a; 

optical coordinate. 

1. INTRODUCTION 

THE PROBLEM of stationary radiative-heat transfer in 
an absorbing emitting and scattering plane-parallel 
medium has been investigated by many authors, and 
with different methods. Anisotropy of scattering and 
effects of diffuse and specular reflectivity of the bound- 
ing surfaces can be included in the analysis[ 1,2]. 

Solving the resulting equations, even in simple, but 
significant problems, seems to be quite a difficult task; 
it has been accomplished up to now mostly by pure 
numerical schemes, or by resorting to drastic approxi- 

*Work supported by C.N.R., Roma. (Grant 
78.02453.07f115.9364). 

mations[3-51. Only in some recent approaches semi- 
analytical techniques have been proposed, in which the 
solution is carried out rigorously as far as possible, and 
numerical calculations are needed as a final step to 
determine the parameters entering the explicit ex- 
pression of the physical quantities sought. It is worth 
mentioning Case’s method[6], which requires rather 
heavy computations, and the integral transform meth- 
od[7, 81, which, on the other hand, can be used only 
in highly idealized problems. A classical projection 
procedure[9] turns out to be very simple and effective 
in very general physical situations[ lo] : the procedure 
is constructive since we can build up an approximate 
solution as close as we wish to the exact solution. 
Numerical calculations are also straightforward. 

Following the last approach above, and in the 
framework of the general theory presented in[l], we 
will study in this paper radiant energy transfer in an 
absorbing and anisotropically scattering slab subject 
to an external axisymmetric applied radiation at one of 
its surfaces, the other being diffusely reflecting. The 
physical interest of such a problem is well 
known[ 11,121. Temperature is supposed to be so low, 
that emission of medium and bounding surfaces can be 
neglected. 

Temperature effects could, however, be taken into 
account without particular difficulties, as well as the 
effects of specular and/or diffuse reflectivity of the first 
boundary, or specular reflectivity of the second. The 
aim of the paper is to investigate how radiative transfer 
is affected by anisotropy of scattering (both linear and 
Rayleigh anisotropic scattering are considered), al- 
bedo and optical depth of the medium, and reflectivity 
of the boundary. Numerical results for the angular 
and the total radiation intensity and for the radiative 
heat flux are presented and discussed. 
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2. THEORY 

In the physical situation considered above the linear 
integro-differential radiative-transfer equation is, in 
standard notation 

in fact reproduced by equation (5a), specialized for 
7 = a, and Ij(7) by taking Legendre moments of 1(7, p) 

as expressed by equation (5). Eliminating then I@, p) in 
the resulting equations, one gets 

ai(r, P) 
p .---a* 

--.-- + i(7, p) = c 

s 

1 

K(~,d)~(7,/4dd, (1) 
-1 

li(7) = c i “.g! pj ” 

H,j(r, 7’) 
j=O i * --(I 

with -a < z < a, - I < p < 1, I being the angular- 
radiation intensity, and c the total albedo. For a finite 
order t of anisotropy, the scattering kernel K(p,$) 
reads as 

where 

X Ij(r’)dr’ + F,(r), i = 0, 1,. t (6) 

K(P> P’) = i “:’ Pjpj(fi)pj(Pth t2) 
j=O 

H&, 2’) = sgn(r - ~‘)i+j&& /t - t’ / ) 

where P, denotes the jth Legendre polynomial[l3], 
and pj is the jth Legendre moment of the scattering- 
transfer function, which depends only on the angle %, 
between the directions before and after collision. In 
particular p0 = 1 and pr =&, i.e. the weighted aver- 
age of cos BO. 

F,(t) = a 

s 

+ )p( - l)‘Gi(r)Gj(t’), 
1 

Pi(p)h(p)e- dp 

0 

1 

~ee-‘2”)‘Ph(~)d~, (7b) 
0 

with sgn x = ) x / /x, and 

The Legendre moment of the unknown radiation 
intensity is defined as 

s 

! 
Ii(T) = 27t I(r,P)J’j(P)dP j = 0, 1, I I ., (3) 

-1 

Kij(X) = 

1 e-““’ 

---- Pi(I*)Pj(~)d~ ; x > 0, @a) 
0 P 

1 

G,(7) = P,(~)g(~)e-(‘-‘)!~d~. (gb) 
0 

with I,(r) = total incident intensity, and’ I,(r) = 
q(r) = net radiative heat flux. The unknown I is un- 
iquely determined by equation (1) and the boundary 
conditions 

All ZC, functions can be simply expressed in terms of 
exponential integrals [13] 

s 

1 

E,(x) = pn-2e”‘xiNdp; (9) 
0 

a being the total power entering the medium through 
the plane T = -a, h(p) its angular distribution, and 
p < 1 the diffuse reflectivity of the other surface z = n. 
The function g(p) accounts for the angular distribution 
of reflected radiation. 

Formal solution of equation (1) upon conditions (4) 
yields, for p > 0 

c 

i 
X 

. -cl 

e-(*-:‘h’~ Ij(7’)d7’ + ~e-(~‘r)~ji~~~), (sa) 

f(7, --/1) = c ,i (2j + I)(- l)jpj- 
pj@) 

I 0 P 

X ‘,Cr-~‘)~il Ij(f)dr’ + p e-(‘-“‘/‘g(p) 
r 

1(7,,4 is thus completely given in terms of the L+ 2 
functions i,, f,, . . ., IL and I@, pi). Such functions can be 
found operating on equations (5) themselves. I@, p) is 

(7a) 

the first few are listed in Appendix 1. 
When the index i in equation (6) runs from 0 to L, we 

have a linear system of I;+ 1 integral equations for the 
L+ 1 unknowns fe,lr,..., IL, in whtch all effects of 
reflection are incorporated exactly in the kernels and 
known terms. The system can be solved easily and 
rigorously by a projection procedure already adopted 
in [14] for a problem of neutron transport, i.e. by 
expanding all moments as 

Ij(7)=~o~~!)“*~:P”(~) j=O,l,..., L, 

where 

Equation (10) is then used in equation (6), which is 
finally multiplied through by [(am + 1)/2a]“* P&/a), 
M = 0, 1,. ., N, and integrated from -a to + a, to get a 
linear algebraic system of (L + l)(N + 1) equations for 
the (L+ l)(N + 1) unknown coefficients vi,. This con- 
structive procedure yields a sequence of approximate 
solutions, whose convergence to the exact solution 
when N + + x, is guaranteed a priori [l, 10,141; the 
less conservative the medium, the faster the con- 
vergence rate, which however has always been ex- 
tremely satisfactory in all considered cases, so that 
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only rather small values of N have been required. Once 
the Qs, j=O, l,..., L, are known up to the desired 
degree of accuracy, the angular-radiation intensity 
follows from equations (5) and its higher moments 
I L+lrlL+Z,. from equation (6). Also the partial 
radiative heat fluxes q+ and q-, with q+(r) - 
q-(r) = q(r), can be explicitly evaluated as 

q+(z) = 2n @tf(T,p)d& 

q-(7) = 2n ‘pl(r, -p)dpc. (12) 
I 0 

I? 

+ 3&s &,(7, t’)f,(T’)dt’ + F,(t), (isa) 
--I( 

s 

(1 
It(T) = $c H,,(t,t’)l,(t’)d~’ 

-0 

s 

n 
+ &i& H,,(T,T’)l,(r’)d+ + F,(T), (15b) 

-Cl 

whose kernels are listed in Appendix 1. We have now 
to expand I, and 1, according to equation (lo), and to 
use such expansions in the RHS of equations (15). 
The result reads as 

3. APPLICATIONS 
Ii(r) = e-(“-‘) + 2( - 1)‘eP2”PEz+& - T) 

1’2 
We will consider two examples with different order 

of anisotropy. In both cases the externally applied 
radiation is normalized to c( = 1, and enters the 
medium normally to the first bounding surface, and 
radiation reflected from the second boundary is iso- 
tropic. In symbols 

k(P) = &(P - l), s(P) = 2. (13) 

‘!,“[tc%(T, 

+ (- l)‘cpD,OE, +i(U - T)] 

II; [$&cU; +i(T) 

+ (- 1~3~c~D~E~+~(u - T)] i = O,l, (16) 
The functions Gi, equation (%b), and F, equation (7b), 
can be thus evaluated explicitly. The first few are 

where the known functions U;(T) and consrant Cr, are 

reported in Appendix 1. given by 
__ 

s (I 

3.1. Linearly anisotropic scattering Us,(z) = s&r - t')sEl+, (IT 

-a 
- T’],&@dT’ 

We take L= 1 in equation (2), with p1 = Do ranging (17) 
from -$ to +i since K(p,$) must always be positive. 
A positive (negative) PO means forward (backward) and 
scattering, ,Lio = 0 corresponds to isotropic scattering. 

s 

(I 
The angular radiation intensity is given by D”, = Ez+,(a - T)p, z 

0 
dz, (18) 

--o a 

f(r.p)=~~ 
s 

r 
e-1r --t’b I,fz’)dT’ respectively. The unknown expansion coefficients oi 

4XP --LI can in turn be obtained from the linear algebraic 
7 

e-(r-z’)+~fl(T’)dT’ 
-0 

+ le-@+‘)6(/r - l), 
271 

system 
‘li = Fi + i i [(‘m + 1)(2n + 1)11’2Gij ‘Ij 

m m Inn nr 
j=O n=O 2a 

(14a) 
(19) 

I(T, -p) = c i a e(r-f’)‘il I&‘)d$ 
m = 0, 1, ., N ; i = 0,l 

with matrix elements 

+ 2p;e-‘“-‘)*” s e &(a - T’)~,(T’)dT’ 
G$, = fc(3~,)J[c~,+,’ + (- 1)‘2pD~D$J, (20) 

--u where 

c 
-_ 4n 3& 

s 
1 e’T-““’ f,(t’) d?’ C$,, = ~~~~~~~)dT~~~sgn(T -T’) 

xE ~+a(lT -W’n~)df, (21) 

(14b) and inhomogeneous terms 

in terms of its first two moments I, and I, only, which F”, = l’* [E, + (- 1)S2pe-za0;3 (22) 
are solution to the system of two coupled linear 
integral equations where 

* i,(T) = $C s ff,,(T, T’)I,(s’)dz’ 
--LI 
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All integrals in equations (17), (18), (21) and (23) can be p1 = 0 and pz = (l/10). The angular radiation in- 
evaluated analytically, as shown in Appendix 2. Once tensity is given by 
the 2N + 2 coefficients $ and ai are found from the 
algebraic system, equation (19). equations (16) yield, I(Z, p) = c f 

i 

r 
e-“-“’ ,I I,(f)& 

more accurately than (lo), I,(T) and 1,(t). and 4n P, -0 

W-4 

moreover we get c 1 P&c) 1 +____ 
4n2 /.l 

e-“-“““[,(r’)&’ 
--y 

+ Le-‘a+r)6(p - l), 
2n 

(24a) 

E,(a - r’)l&‘) d7’ 

x W(- t,~) - 2pD,’ em’“-C)‘l’], (24b) - E,(a - T’)]l,(z’)dr’. (29b) 

with and involves the moments I, and I, only. They are 

W,(LP) = L 
i 

solutions to the system of two linear integral equations 
e -- (r-T 1 I‘ p dz’, (25) 

P, --o Z,(z) = fc H,,(r,r’)l,(r’)dr’ 
and 

Ho2(7, r’)l,(z’)dz’ + F,(z), (30a) 
-0 

xjo(2n; 1)1’2v;G.‘(r) + e-‘“+‘,, (26a) 12(7) = +j r~~20”“‘““‘d~’ 
n 

q-(T) = 2p e -” E,(a - z) + ;c 
! 

I I, 
HZZ(C~ )I,(7 W + F2(7), (job) 

--(I 

a;[( - l)“G;( -T) whose kernels are reported in Appendix 1. Expanding 
I, and I, in the RHS of equations (30) according to 

+ 2pD:E& - T)] 
equations (lo), and following the same procedure 
previously proposed, yields for the expansion coef- 
ficients qi and qi the linear algebraic system of order 
2N + 2 

x;[(- l)“G,‘(-r)-2pDAE,(a - r)], (26b) 11$ = Fz + i 

with 

i [(2m ’ ‘r + 1)]1’2 G$.,2jvij 

j-0 n=Cl 

(311 

’ G;(7) = 
s 

\- -, 

(27) 
m = 0, l,.. .,N; i = 0, 1, 

-0 where 
The functions W, and G”, are also explicitly given in 
Appendix 2. It can be noticed that ’ 2 [E, + pem2’(3Di - Di)],(32) 

1(*,0)=&r,(r), 7 # fa, q+(-a) = 1, and 

q-(a) = m+(a). (28) 
G;; = $c($C& - &C:.) + $cpD:(3D,2 - Of), 

(33a) 

3.2. Rayleigh scattering 

We must take now L= 2 in equation (2), and set 

G;; = $c(+C;, - fC:.) + )cp(3D; - D;)Df, 

(33b) 
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G22 =+("C4 
mn 4 4 Inn -fc&$+V 4 mn ) 

+ pcp(3D; - D9(3D,2 - Ill). (33c) 

All quantities ofphysical interest can then be expressed 
in terms of PI: and sf, solution to equation (31). In fact 
we get 

flno %(7, t) 

1’2 
1tPz(P) K(7, P) 

+ &exp( -(a + 7))G - 1). Wa) 

a-7 
+ ~(30: - L),D)exp - - 

( )I , WW 
iu 

for the angular intensity, 

Zo(7) = exp( -(a + T)) -t 2pexp( -2a)&(a - 5) 

qnz{ac[t Iz(7) - t cx7,l 

+ &p(3D,2 - Dlj)E2(a - 7)), 

for the total incident intensity, 

“’ 
yl:G,o(d 

(35) 

tl,Z W.'(7) -@$X7)1, Wa) 

q-(r) = 2p eezO E,(a - 7) 

I’* 
7t[(-l)"G%-7) 

+ zpD:,,OE,(a - 7)] 

1:2 

-)(-l)“G:(-7) 

+ p(30,Z - ME& - 7)1, (36b) 

for the partial radiative heat fluxes. I,(7) can be 
evaluated as I,(7) = q+(r) - q-(r). Again it is worth 

H.MT 23,:6- G 

noticing that 

Q7,O) = f [1,(t) - +f2(7)], 7 # ia, 

(37) 
q+(-a) = 1, q-(a) = pq+(a). 

4. NUMERICAL RESULTS AND COMMENTS 

Values of a in the range 0.1-2.5 have been con- 
sidered for both the anisotropic scattering modes 
assumed and for p = 0, 0.5, 1.0. 

4.1. Linearly anisotropic scattering 
Only the case c = 0.9 will be reported, as significant 

of situations where scattering is the prevailing mech- 
anism through which radiation interacts with the 
material continuum and where, therefore, the effects of 
the scattering mode are magnified. For each value of n 
the cases PO = 3 (forward scattering), 1-7, = 0 (isotropic 
scattering) and PO = -f (backward scattering) have 
been considered. 

The distributions of I, which result for the situations 
examined are given in Fig. 1 while the distributions of q 
are given in Fig. 2. The effects due to the forwardness of 
the scattering can be clearly grasped in the case of a 
transparent boundary (p = 0) at 7 = a (Figs. 1-A and 
2-A), if one reminds that I, is proportional, through 
(1 -c), to the local volumetric rate of energy absorp- 
tion. Since forward (backward) scattering increases 
(decreases) the probability for a photon to proceed 
within the slab further than in the isotropic scattering 
case without experiencing absorption, it is then ob- 
vious that, close to the boundary 7 = -a, the curve for 
,6, = 3 ( -5) is lower (higher) than the isotropic scatter- 
ing curve, while it is higher (lower) far enough from this 
boundary. The resulting trends and particularly the 
maximum which appears for the highest values of a are 
due to the boundary condition assumed at 7= -a 
coupled to the high value of c considered (for c=O.2. 
the curves, not given here, exhibit the usual 
exponential-like decreasing trend and the maximum 
does not appear). 

As far as the net radiative flux q is concerned, being 
q = q+ - q-, no crossing results between the q curves 
for k. > 0, PO = 0, PO < 0 since, assuming the &, = 0 
case as the reference one, forward (backward) scatter- 
ing causes a larger (smaller) q+ and a smaller (larger) 
q- to occur and therefore a higher (lower) curve results 
for q. It must be furthermore noted that the transmis- 
sivity of the slab is higher (lower) for PO > 0 (< 0), 
since the corresponding mode of scattering causes a 
larger (smaller) number of photons to escape from the 
slab through the boundary 7 = a. 

When the boundary 7 = a is assumed to reflect in a 
diffuse way the shape and the relative departure of the 
curves at different jIo are changed according to the 
values of p and a considered. For a = 0.1 the difference 
between the I, curves at different values of,ii, decreases 
when p increases and practically disappears when 
p = 1. The optically thin limit is approached for this 
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----- 

-1 0 r/a I-l 0 *;a 1-l 0 t-a 1 

FIG. 1, Linearly anisotropic scattering: the total radiation intensity f,(z) as a function of r/a for c = 0.9 
(.. ,& = - 113, --- pco = 0, -- ‘- Ijo = l/3). 

value of a and when p = 1 the flux of the reflected 
photons which re-enter into the slab is ofsame order of 
magnitude as the flux entering through the boundary 
T = -a : a sort of compensation therefore occurs and a 
situation typical of isotropic scattering, with no pre- 
vailing directional effects, occurs whatever the value of 
fiO. The increasing trend which results for both the 
values of p considered is obviously due to the reflecting 
boundary which allows only a fraction (1 - p) of the 
photons reaching the boundary to ‘escape through it’ 
from the slab. 

For a = 1.0,2.5, i.e. for interm~iate-high values of 

the optical thickness, the curves at different values of fiO 
maintain their own individuality since absorption is no 
longer negligible and therefore the flux of photons 
which re-enter into the slab at z = a is largely lower 
than the one entering at z = -a: the mechanism 
working in optically thinner case is not effective any 
more. 

As a result of the relevance of absorption, reflection 
significantly affects radiative transfer in the region 
close to the reflecting boundary for a depth depending 
on the value of a. This is apparent from Figs. I-B, C 
where the most evident feature of the I, dist~butions is 

FIG. 2. Linearly anisotropic scattering: the net radiative flux y(z) as a function of riu for 
(-_ & = - l/3, ------ & = 0, I- & _: l/3). 
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a substantially uniform behavior for a = 1.0, while for 
a = 2.5 a marked rising of the curves results in the 
proximity of the reflecting boundary, no significant 
change occurring close to the boundary z = -a. 

It must be furthermore noted that the influence of 
the reflecting boundary is slightly more pronounced in 
the forward scattering case since this scattering mode 
makes more photons available for reflection at T = a. 

The infiuence of the reflecting boundary on the q 
distribution (Figs. Z-B, C) can easily be interpreted on 
the basis of all the arguments previously used: since 
reflection mainly affects the value of q-, when p is 
increased the q curves are drastically lowered for low 
values of a, while they are noticeably reduced only 
close to the reflecting boundary when a higher optical 
thickness is considered. The angular distribution of 
l(z,@) is given in Figs. 3-5 for some significant sit- 
uations. The resulting curves can be interpreted 
straightforwardly and no specific comment will be 
deserved to them. It must only be noted that, owing to 
the boundary conditions assumed at 5 = -a, for any 
‘I, it is I(T, 1) = z, as it results from equation (24a) too. 

4.2. Rayleigh scattering 
Two values of c (0.2, 0.9) have been considered as 

significant of situations where the prevailing inter- 
action of the radiation with the material continuum 
is due to absorption and scattering respectively. The 
resulting I, and q distribution are given in Figs. 6 
and 7. 

No substantial difference arises with respect to the 
linearly anisotropic case and the influence of a reflect- 
ing boundary on the radiative transfer can be ex- 
plained on the basis of the same arguments used there. 
Since the relevance of the absorption process plays a 
significant role in setting the resulting effects, the same 
trends result when a is increased for any given c or 
when c is decreased for any given a. 

It must be furthermore noted that when the resulting 
values of I, are multiplied by (1 - c) the curves giving 
the distribution of the local volumetric rate of energy 
absorption are lower for c = 0.9 than for c = 0.2, as 
physically due. 

The angular distribution of i(r, p) is given in Fig. 8 
for a = 1 and c = 0.9 at different values of p and 5. 

.. -.. 
SO” 

a =I 

180’ 
.I5 

FIG. 3. Linearly anisotropic scattering: the angular distribution of the radiation intensity I(s,p) at t = c1 for 
c=O.9,p=O.(---jTi,= -1/3,---~8,=o,-~-~,=1/3). 
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,075 .05 .025 0 .025 .05 

FIG. 4. Linearly anisotropic scattering: the angular distribution of the radiation intensity I(T, p) at T = a for 
c = 0.9. p = I. (-- /ice = - 113, ~-- /Ii0 = 0, & = 1.13). 

o[ 

‘?3- .2 .I 0 .I .2 .3 

FIG. 5. Linearly anisotropic scattering: the angular distribution of the radiation intensity I(T,~) at z =: 0 for 
a=i,c=0.9.( -&= -1;3,~--- jio = 0, jio = l/3). 
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FIG. 6. Rayleigh scattering: the total radiation intensity I,(r) as a function of r/a. (- - - c = 0.2, ~ c = 0.9) 

’ I \\ I \ \\I ‘. \I \t. \ 

849 

FIG. 7. Rayleigh scattering: the net radiative flux q(r) as a function of z/a. (-- c = 0.2, ~ c = 0.9). 
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9. 

Rc;. 8. Rayleigh scattering: the angular distribution of the radiation intensity I(r,p) for n = 1, c = 0.9. 
(--- p=:o,---p=O.5,~-~-_ pzl). 
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APPENDIX 1 

In equation (8a) 

&J,(x) = E,(x). 

&1(x) = K,,(x) = I%(X), 

K,,(x) = E&x), 

K,,(x) = K,,(x) = I&(X) - !E,(x), 

K,*(x) = K*,(x) = t&(x) - :E*fxf, 

K*,(x) = %&(X) - i&(x) f f&(x). 
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In equation (7b), when h(p) = J(p - 1) 

F,(x) = exp( - (a + x)) + 2p exp( - Za)E,(a - x), 

F,(x) = exp( -(a + x)) -2p exp( - 2a)E,(a - x), 

F*(x) = exp( - (a + x)) + p exp( - 2a)[3E,(a - x) 
- &(a - x)]. 

In equation (8b), when g(p) = 2 

G,(x) = 2E,(a - x), 

G,(x) = 2E,(a - x), 

G2(x) = 3E,(a - x) - &(a - x). 

In equation (6) when g(n) = 2 

H,,(r, 5’) = E,( 1 ‘I - z’ 1) + ZpE,(a - r)E,(a - T’), 

H,i(r,r’) = sgn(r - r’)E*( 1~ - ~‘1) 

+ ZpE,(a - r)E,(a - T’), 

H,,(T,T’) = sgn(r - T’)EJ I T - T’ I ) 

- ZpE,(a - r)E,(a - T’), 

H,,(c~‘) = &IT - ~‘1) -2pE,(a - r)E,(a - r’), 

H,,(LT’) = +E,( IT - 7’1) -+E,(lr - ~‘1) 

+ @,(a - 5)[3E,(a - T’) - &(a - T’)], 

H&r’) = $E~(IT - 7’1) -:E,( IT - ~‘1) 

+ p[3E,(a - 7) - E,(a - r)] E,(a - r’), 

HA7.7’) = $E,( ) T - 7’ I ) -+E,( I T - T’ I ) 

+@,(IT - r’)) ++p[3E,(a - T) 

- &(a - r)][3E,(a - T’) -E,(a - T’)]. 

APPENDIX 2 

The integral in equation (17) can be solved by a Taylor 
series expansion of Legendre polynomials, which yields 

” (2k-l)!! 
Vi(x) = c ~ 

L=o a’k! 

x[(-l)kX;(a+x)+(-l)“X;(a-x)], 

where (2k - 1) ! ! = (2k - 1)(2k - 3). .5.3.1, Cn+ is a 
Gegenbauer ultraspherical polynomial [13], and 

s 

x 

Xi(x) = Y’S, +,(y)dy. 
c! 

All X;(x) can be evaluated by the recursion formula 

Xi(x) = & [xk+ ’ E,+,(x) + x;:1> 

starting from 

X; ‘(x) = y(k, x) 

where y is the well known incomplete gamma function [13]. 
An analogous technique is successful with the evaluation of 
equation (18). We get 

” (-1)‘(2k - l)!!(n + k)! 
D”.= 1 Y;+z 

k=O 
a*k!(2k)!(n - k)! ’ 

I 
20 

Y; = y’E,( y)dr = X;- ‘(2~). 
II 

As regards C;,, equation (21) we first rearrange the double 
integral as 

.i 

20 

C&=a[(-l)m+“+(-l)s] E,+,(y) 
0 

s 

I -WI 
x P,(x)P. x + I’ dxdy, 

-I ( 1 a 

and then use Kschwendt’s result [15], to put the last integral 
in the form of a polynomial of degree m + n + I with respect to 
y. Setting 

1 
an” v=o 

2m + 1 

BY= -1 v=l 

x(lm-nl+v-2k) 

v=2,3,...,m+n+l 

where a,,,, is the Kronecker symbol, the result reads as 

Can = (_ l)(n-m+ In-d)‘2 [(_ I),+. + (_ lyla 

The integral in equation (23) can be handled again by a 
Taylor expansion of Legendre polynomials, and yields simply 

” (-1)“(2k - l)!!(n + k)! 
En= (-1)” 1 -----y(k + 1,2a) 

k=O 
akk!(2k)!(n - k)! 

The same procedure is in order for the functions W,, equation 
(25) and G;, equation (27) which are thus expressed as 

” (- 1)‘(2k - l)!! 
K(7,P) = c 

k=O a’k! 

and 

” (- 1)‘(2k - I)!! 
G(7) = C 

a’k! 
cykl ‘21 1 

0 
Xi +‘(a + T), 

k=O a 

TRANSFERT RADIATIF DANS UNE PLAQUE ABSORBANTE 
ET ANISOTROPIQUEMENT DIFFUSANTE AVEC UNE 

FRONTIERE REFLECHISSANTE 

Resume-On considtre le transfert radiatif dans une plaque plane en supposant qu’un rayonnement externe 
frappe normalement une face, tandis que I’autre face riflechit de facon diffuse. On considire aussi bien les 
mecanisme de diffusion anisotropiques lineaires et de Rayleigh. Une solution rigoureuse est developpee en 
suivant une procedure ba&e sur des mtthodes projectives: les formules resultantes ont ete obtenues 
numtriquement pour obtenir la distribution des variables physiques sensibles, pour quelques situations 

inttressants. 



852 

STRAHLUNGSWARMEUBERGANG IN EINER ABSORBIERENDEN UND 
ANISOTROP STREUENDEN PLATTE MIT EINER REFLEKTIERENDEN 

BEGRENZUNG 

Zusammenfassung-Es wird der Strahlungswarmeaustausch in einer ebenen Platte untersucht, uobei die 
von auBen aufgepragte Strahlung senkrecht auf die eine Begrenzung der Platte trifft, wahrend die andere 
Begrenzung diffusreflektiert. Die Streuverteilung im linear anisotropen Fall und nach Rayleigh werden beide 
betrachtet. Es wird eine genaue Losung entwickelt. die sich an ein Konstruktionsverfahren anlehnt, welches 
auf Projektionsmethoden beruht. Die daraus gewonnenen Rechenformeln sind numerisch weiterverarbeitet 
worden, urn die Verteilung der physikalisch relevanten GroBen fur einige wichtige Fdle zu bekommen. 

JlYYMCTbIjl HEPEHOC B HOI-JIOII(AK)lqEH M AHM30TPOHHO PACCEMBAIOlBEH 
HJIMTE C OTPAxAIOIBEZi HOBEPXHOCTbK) 

AwoTaunn -~ kiccnenosaH nyqncTbiti nepenoc B nponsuaeMoii nnoc~oii n.mTe B npemonoxeHse. 

qT0 noroK a3nyseHm HopManbHo IlailaeT Ha 0nHy H3 ee noeepxHocTeti H orpaxaercn ~~I(I$@~JHo 

OT~pyt-O8.PaCCMOTpeHbIKaKJ,kfHeiiHO~lHri3OTpOllt~afl. raK U pe--EeBCKaR MO+qbl paCCeHHtU.C I,OMOLL,bK, 

npOeKUIiOHHbIXMeTO~OBnO~yVeftOCTpOrOe pemeHrte. B pe3yJlbTaTe qHCJIeHHOti 06pdOTKH paCWTlrb,X 

+OpMyn onpenenetibt (t)kwwecKkie nepeMeHHble;lnn pn&i npaKleYecKs BamHblx cnyvaee. 


